Metamath Proof Explorer


Theorem sbn1

Description: One direction of sbn , using fewer axioms. Compare 19.2 . (Contributed by Steven Nguyen, 18-Aug-2023)

Ref Expression
Assertion sbn1 tx¬φ¬txφ

Proof

Step Hyp Ref Expression
1 nsb x¬¬tx
2 fal ¬
3 1 2 mpg ¬tx
4 pm2.21 ¬φφ
5 4 sb2imi tx¬φtxφtx
6 3 5 mtoi tx¬φ¬txφ