Metamath Proof Explorer


Theorem nsb

Description: Any substitution in an always false formula is false. (Contributed by Steven Nguyen, 3-May-2023)

Ref Expression
Assertion nsb x ¬ φ ¬ t x φ

Proof

Step Hyp Ref Expression
1 alnex x ¬ φ ¬ x φ
2 1 biimpi x ¬ φ ¬ x φ
3 spsbe t x φ x φ
4 2 3 nsyl x ¬ φ ¬ t x φ