Description: Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfeel2 | |- ( -. A. x x = y -> F/ x y e. z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ x t e. z |
|
2 | elequ1 | |- ( t = y -> ( t e. z <-> y e. z ) ) |
|
3 | 1 2 | bj-dvelimv | |- ( -. A. x x = y -> F/ x y e. z ) |