Metamath Proof Explorer


Theorem bj-taginv

Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-taginv A = x | x tag A

Proof

Step Hyp Ref Expression
1 bj-snglinv A = x | x sngl A
2 bj-sngltag x V x sngl A x tag A
3 2 elv x sngl A x tag A
4 3 abbii x | x sngl A = x | x tag A
5 1 4 eqtri A = x | x tag A