Metamath Proof Explorer


Theorem bj-unirel

Description: Quantitative version of uniexr : if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024)

Ref Expression
Assertion bj-unirel AVA𝒫𝒫V

Proof

Step Hyp Ref Expression
1 pwuni A𝒫A
2 pwel AV𝒫A𝒫𝒫V
3 bj-sselpwuni A𝒫A𝒫A𝒫𝒫VA𝒫𝒫𝒫V
4 1 2 3 sylancr AVA𝒫𝒫𝒫V
5 unipw 𝒫𝒫V=𝒫V
6 5 pweqi 𝒫𝒫𝒫V=𝒫𝒫V
7 4 6 eleqtrdi AVA𝒫𝒫V