Metamath Proof Explorer


Theorem bj-vtoclg

Description: A version of vtoclg with an additional disjoint variable condition (which is removable if we allow use of df-clab , see bj-vtoclg1f ), which requires fewer axioms (i.e., removes dependency on ax-6 , ax-7 , ax-9 , ax-12 , ax-ext , df-clab , df-cleq , df-v ). (Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-vtoclg.maj x = A φ ψ
bj-vtoclg.min φ
Assertion bj-vtoclg A V ψ

Proof

Step Hyp Ref Expression
1 bj-vtoclg.maj x = A φ ψ
2 bj-vtoclg.min φ
3 elissetv A V x x = A
4 1 2 bj-exlimvmpi x x = A ψ
5 3 4 syl A V ψ