Metamath Proof Explorer


Theorem bj-vtoclg1f

Description: Reprove vtoclg1f from bj-vtoclg1f1 . This removes dependency on ax-ext , df-cleq and df-v . Use bj-vtoclg1fv instead when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 14-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-vtoclg1f.nf x ψ
bj-vtoclg1f.maj x = A φ ψ
bj-vtoclg1f.min φ
Assertion bj-vtoclg1f A V ψ

Proof

Step Hyp Ref Expression
1 bj-vtoclg1f.nf x ψ
2 bj-vtoclg1f.maj x = A φ ψ
3 bj-vtoclg1f.min φ
4 elisset A V x x = A
5 1 2 3 bj-exlimmpi x x = A ψ
6 4 5 syl A V ψ