Metamath Proof Explorer


Theorem bj-xpima1snALT

Description: Alternate proof of bj-xpima1sn . (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-xpima1snALT ¬XAA×BX=

Proof

Step Hyp Ref Expression
1 disjsn AX=¬XA
2 xpima1 AX=A×BX=
3 1 2 sylbir ¬XAA×BX=