Metamath Proof Explorer


Theorem bm1.3ii

Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis bm1.3ii.1 xyφyx
Assertion bm1.3ii xyyxφ

Proof

Step Hyp Ref Expression
1 bm1.3ii.1 xyφyx
2 19.42v xyφyzyyxyzφyφyzxyyxyzφ
3 bimsc1 φyzyxyzφyxφ
4 3 alanimi yφyzyyxyzφyyxφ
5 4 eximi xyφyzyyxyzφxyyxφ
6 2 5 sylbir yφyzxyyxyzφxyyxφ
7 elequ2 x=zyxyz
8 7 imbi2d x=zφyxφyz
9 8 albidv x=zyφyxyφyz
10 9 cbvexvw xyφyxzyφyz
11 1 10 mpbi zyφyz
12 ax-sep xyyxyzφ
13 11 12 exan zyφyzxyyxyzφ
14 6 13 exlimiiv xyyxφ