Metamath Proof Explorer


Theorem bnj1034

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1034.1 φf=predXAR
bnj1034.2 ψiωsucinfsuci=yfipredyAR
bnj1034.3 χnDfFnnφψ
bnj1034.4 θRFrSeAXA
bnj1034.5 τBVTrFoBARpredXARB
bnj1034.7 ζinzfi
bnj1034.8 D=ω
bnj1034.9 K=f|nDfFnnφψ
bnj1034.10 fniθτχζzB
Assertion bnj1034 θτtrClXARB

Proof

Step Hyp Ref Expression
1 bnj1034.1 φf=predXAR
2 bnj1034.2 ψiωsucinfsuci=yfipredyAR
3 bnj1034.3 χnDfFnnφψ
4 bnj1034.4 θRFrSeAXA
5 bnj1034.5 τBVTrFoBARpredXARB
6 bnj1034.7 ζinzfi
7 bnj1034.8 D=ω
8 bnj1034.9 K=f|nDfFnnφψ
9 bnj1034.10 fniθτχζzB
10 biid ztrClXARztrClXAR
11 1 2 3 4 5 10 6 7 8 9 bnj1033 θτtrClXARB