Metamath Proof Explorer


Theorem bnj579

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj579.1 φ f = pred x A R
bnj579.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj579.3 D = ω
Assertion bnj579 n D * f f Fn n φ ψ

Proof

Step Hyp Ref Expression
1 bnj579.1 φ f = pred x A R
2 bnj579.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj579.3 D = ω
4 biid f Fn n φ ψ f Fn n φ ψ
5 biid [˙g / f]˙ φ [˙g / f]˙ φ
6 biid [˙g / f]˙ ψ [˙g / f]˙ ψ
7 biid [˙g / f]˙ f Fn n φ ψ [˙g / f]˙ f Fn n φ ψ
8 biid n D f Fn n φ ψ [˙g / f]˙ f Fn n φ ψ f j = g j n D f Fn n φ ψ [˙g / f]˙ f Fn n φ ψ f j = g j
9 biid k n k E j [˙k / j]˙ n D f Fn n φ ψ [˙g / f]˙ f Fn n φ ψ f j = g j k n k E j [˙k / j]˙ n D f Fn n φ ψ [˙g / f]˙ f Fn n φ ψ f j = g j
10 1 2 4 5 6 7 3 8 9 bnj580 n D * f f Fn n φ ψ