Metamath Proof Explorer


Theorem bnj601

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj601.1 φf=predxAR
bnj601.2 ψiωsucinfsuci=yfipredyAR
bnj601.3 D=ω
bnj601.4 χRFrSeAxA∃!ffFnnφψ
bnj601.5 θmDmEn[˙m/n]˙χ
Assertion bnj601 n1𝑜nDθχ

Proof

Step Hyp Ref Expression
1 bnj601.1 φf=predxAR
2 bnj601.2 ψiωsucinfsuci=yfipredyAR
3 bnj601.3 D=ω
4 bnj601.4 χRFrSeAxA∃!ffFnnφψ
5 bnj601.5 θmDmEn[˙m/n]˙χ
6 biid [˙m/n]˙φ[˙m/n]˙φ
7 biid [˙m/n]˙ψ[˙m/n]˙ψ
8 biid [˙m/n]˙χ[˙m/n]˙χ
9 bnj602 y=zpredyAR=predzAR
10 9 cbviunv yfppredyAR=zfppredzAR
11 10 opeq2i myfppredyAR=mzfppredzAR
12 11 sneqi myfppredyAR=mzfppredzAR
13 12 uneq2i fmyfppredyAR=fmzfppredzAR
14 dfsbcq fmyfppredyAR=fmzfppredzAR[˙fmyfppredyAR/f]˙φ[˙fmzfppredzAR/f]˙φ
15 13 14 ax-mp [˙fmyfppredyAR/f]˙φ[˙fmzfppredzAR/f]˙φ
16 dfsbcq fmyfppredyAR=fmzfppredzAR[˙fmyfppredyAR/f]˙ψ[˙fmzfppredzAR/f]˙ψ
17 13 16 ax-mp [˙fmyfppredyAR/f]˙ψ[˙fmzfppredzAR/f]˙ψ
18 dfsbcq fmyfppredyAR=fmzfppredzAR[˙fmyfppredyAR/f]˙χ[˙fmzfppredzAR/f]˙χ
19 13 18 ax-mp [˙fmyfppredyAR/f]˙χ[˙fmzfppredzAR/f]˙χ
20 13 eqcomi fmzfppredzAR=fmyfppredyAR
21 biid fFnm[˙m/n]˙φ[˙m/n]˙ψfFnm[˙m/n]˙φ[˙m/n]˙ψ
22 biid mDn=sucmpmmDn=sucmpm
23 biid mDn=sucmpωm=sucpmDn=sucmpωm=sucp
24 biid iωsucinm=suciiωsucinm=suci
25 biid iωsucinmsuciiωsucinmsuci
26 eqid yfipredyAR=yfipredyAR
27 eqid yfppredyAR=yfppredyAR
28 eqid yfmzfppredzARipredyAR=yfmzfppredzARipredyAR
29 eqid yfmzfppredzARppredyAR=yfmzfppredzARppredyAR
30 1 2 3 4 5 6 7 8 15 17 19 20 21 22 23 24 25 26 27 28 29 20 bnj600 n1𝑜nDθχ