Metamath Proof Explorer


Theorem bnj62

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj62 [˙z/x]˙xFnAzFnA

Proof

Step Hyp Ref Expression
1 vex yV
2 fneq1 x=yxFnAyFnA
3 1 2 sbcie [˙y/x]˙xFnAyFnA
4 3 sbcbii [˙z/y]˙[˙y/x]˙xFnA[˙z/y]˙yFnA
5 sbccow [˙z/y]˙[˙y/x]˙xFnA[˙z/x]˙xFnA
6 vex zV
7 fneq1 y=zyFnAzFnA
8 6 7 sbcie [˙z/y]˙yFnAzFnA
9 4 5 8 3bitr3i [˙z/x]˙xFnAzFnA