Metamath Proof Explorer


Theorem bnj882

Description: Definition (using hypotheses for readability) of the function giving the transitive closure of X in A by R . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj882.1 φf=predXAR
bnj882.2 ψiωsucinfsuci=yfipredyAR
bnj882.3 D=ω
bnj882.4 B=f|nDfFnnφψ
Assertion bnj882 trClXAR=fBidomffi

Proof

Step Hyp Ref Expression
1 bnj882.1 φf=predXAR
2 bnj882.2 ψiωsucinfsuci=yfipredyAR
3 bnj882.3 D=ω
4 bnj882.4 B=f|nDfFnnφψ
5 df-bnj18 trClXAR=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
6 df-iun fBidomffi=w|fBwidomffi
7 df-iun ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=w|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi
8 1 2 anbi12i φψf=predXARiωsucinfsuci=yfipredyAR
9 8 anbi2i fFnnφψfFnnf=predXARiωsucinfsuci=yfipredyAR
10 3anass fFnnφψfFnnφψ
11 3anass fFnnf=predXARiωsucinfsuci=yfipredyARfFnnf=predXARiωsucinfsuci=yfipredyAR
12 9 10 11 3bitr4i fFnnφψfFnnf=predXARiωsucinfsuci=yfipredyAR
13 3 12 rexeqbii nDfFnnφψnωfFnnf=predXARiωsucinfsuci=yfipredyAR
14 13 abbii f|nDfFnnφψ=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
15 4 14 eqtri B=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
16 15 eleq2i fBff|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
17 16 anbi1i fBwidomffiff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi
18 17 rexbii2 fBwidomffiff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi
19 18 abbii w|fBwidomffi=w|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi
20 7 19 eqtr4i ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=w|fBwidomffi
21 6 20 eqtr4i fBidomffi=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
22 5 21 eqtr4i trClXAR=fBidomffi