Metamath Proof Explorer


Theorem bnj941

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj941.1 G = f n C
Assertion bnj941 C V p = suc n f Fn n G Fn p

Proof

Step Hyp Ref Expression
1 bnj941.1 G = f n C
2 opeq2 C = if C V C n C = n if C V C
3 2 sneqd C = if C V C n C = n if C V C
4 3 uneq2d C = if C V C f n C = f n if C V C
5 1 4 eqtrid C = if C V C G = f n if C V C
6 5 fneq1d C = if C V C G Fn p f n if C V C Fn p
7 6 imbi2d C = if C V C p = suc n f Fn n G Fn p p = suc n f Fn n f n if C V C Fn p
8 eqid f n if C V C = f n if C V C
9 0ex V
10 9 elimel if C V C V
11 8 10 bnj927 p = suc n f Fn n f n if C V C Fn p
12 7 11 dedth C V p = suc n f Fn n G Fn p