| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj941.1 |
|- G = ( f u. { <. n , C >. } ) |
| 2 |
|
opeq2 |
|- ( C = if ( C e. _V , C , (/) ) -> <. n , C >. = <. n , if ( C e. _V , C , (/) ) >. ) |
| 3 |
2
|
sneqd |
|- ( C = if ( C e. _V , C , (/) ) -> { <. n , C >. } = { <. n , if ( C e. _V , C , (/) ) >. } ) |
| 4 |
3
|
uneq2d |
|- ( C = if ( C e. _V , C , (/) ) -> ( f u. { <. n , C >. } ) = ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) ) |
| 5 |
1 4
|
eqtrid |
|- ( C = if ( C e. _V , C , (/) ) -> G = ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) ) |
| 6 |
5
|
fneq1d |
|- ( C = if ( C e. _V , C , (/) ) -> ( G Fn p <-> ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) Fn p ) ) |
| 7 |
6
|
imbi2d |
|- ( C = if ( C e. _V , C , (/) ) -> ( ( ( p = suc n /\ f Fn n ) -> G Fn p ) <-> ( ( p = suc n /\ f Fn n ) -> ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) Fn p ) ) ) |
| 8 |
|
eqid |
|- ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) = ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) |
| 9 |
|
0ex |
|- (/) e. _V |
| 10 |
9
|
elimel |
|- if ( C e. _V , C , (/) ) e. _V |
| 11 |
8 10
|
bnj927 |
|- ( ( p = suc n /\ f Fn n ) -> ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) Fn p ) |
| 12 |
7 11
|
dedth |
|- ( C e. _V -> ( ( p = suc n /\ f Fn n ) -> G Fn p ) ) |