| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj945.1 |
|- G = ( f u. { <. n , C >. } ) |
| 2 |
|
fndm |
|- ( f Fn n -> dom f = n ) |
| 3 |
2
|
ad2antll |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> dom f = n ) |
| 4 |
3
|
eleq2d |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> ( A e. dom f <-> A e. n ) ) |
| 5 |
4
|
pm5.32i |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. dom f ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
| 6 |
1
|
bnj941 |
|- ( C e. _V -> ( ( p = suc n /\ f Fn n ) -> G Fn p ) ) |
| 7 |
6
|
imp |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> G Fn p ) |
| 8 |
7
|
fnfund |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> Fun G ) |
| 9 |
1
|
bnj931 |
|- f C_ G |
| 10 |
8 9
|
jctir |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> ( Fun G /\ f C_ G ) ) |
| 11 |
10
|
anim1i |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. dom f ) -> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
| 12 |
5 11
|
sylbir |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) -> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
| 13 |
|
df-bnj17 |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) <-> ( ( C e. _V /\ f Fn n /\ p = suc n ) /\ A e. n ) ) |
| 14 |
|
3ancomb |
|- ( ( C e. _V /\ f Fn n /\ p = suc n ) <-> ( C e. _V /\ p = suc n /\ f Fn n ) ) |
| 15 |
|
3anass |
|- ( ( C e. _V /\ p = suc n /\ f Fn n ) <-> ( C e. _V /\ ( p = suc n /\ f Fn n ) ) ) |
| 16 |
14 15
|
bitri |
|- ( ( C e. _V /\ f Fn n /\ p = suc n ) <-> ( C e. _V /\ ( p = suc n /\ f Fn n ) ) ) |
| 17 |
16
|
anbi1i |
|- ( ( ( C e. _V /\ f Fn n /\ p = suc n ) /\ A e. n ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
| 18 |
13 17
|
bitri |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
| 19 |
|
df-3an |
|- ( ( Fun G /\ f C_ G /\ A e. dom f ) <-> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
| 20 |
12 18 19
|
3imtr4i |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) -> ( Fun G /\ f C_ G /\ A e. dom f ) ) |
| 21 |
|
funssfv |
|- ( ( Fun G /\ f C_ G /\ A e. dom f ) -> ( G ` A ) = ( f ` A ) ) |
| 22 |
20 21
|
syl |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) -> ( G ` A ) = ( f ` A ) ) |