Metamath Proof Explorer


Theorem bnj978

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj978.1 θRFrSeAXAytrClXARzpredyAR
bnj978.2 θztrClXAR
Assertion bnj978 RFrSeAXATrFotrClXARAR

Proof

Step Hyp Ref Expression
1 bnj978.1 θRFrSeAXAytrClXARzpredyAR
2 bnj978.2 θztrClXAR
3 1 2 sylbir RFrSeAXAytrClXARzpredyARztrClXAR
4 3 gen2 yzRFrSeAXAytrClXARzpredyARztrClXAR
5 bnj253 RFrSeAXAytrClXARzpredyARRFrSeAXAytrClXARzpredyAR
6 5 imbi1i RFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAytrClXARzpredyARztrClXAR
7 6 2albii yzRFrSeAXAytrClXARzpredyARztrClXARyzRFrSeAXAytrClXARzpredyARztrClXAR
8 3impexp RFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAytrClXARzpredyARztrClXAR
9 8 2albii yzRFrSeAXAytrClXARzpredyARztrClXARyzRFrSeAXAytrClXARzpredyARztrClXAR
10 19.21v zRFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAzytrClXARzpredyARztrClXAR
11 19.21v zytrClXARzpredyARztrClXARytrClXARzzpredyARztrClXAR
12 11 imbi2i RFrSeAXAzytrClXARzpredyARztrClXARRFrSeAXAytrClXARzzpredyARztrClXAR
13 10 12 bitri zRFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAytrClXARzzpredyARztrClXAR
14 13 albii yzRFrSeAXAytrClXARzpredyARztrClXARyRFrSeAXAytrClXARzzpredyARztrClXAR
15 19.21v yRFrSeAXAytrClXARzzpredyARztrClXARRFrSeAXAyytrClXARzzpredyARztrClXAR
16 df-ral ytrClXARzzpredyARztrClXARyytrClXARzzpredyARztrClXAR
17 16 bicomi yytrClXARzzpredyARztrClXARytrClXARzzpredyARztrClXAR
18 17 imbi2i RFrSeAXAyytrClXARzzpredyARztrClXARRFrSeAXAytrClXARzzpredyARztrClXAR
19 14 15 18 3bitri yzRFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAytrClXARzzpredyARztrClXAR
20 7 9 19 3bitri yzRFrSeAXAytrClXARzpredyARztrClXARRFrSeAXAytrClXARzzpredyARztrClXAR
21 4 20 mpbi RFrSeAXAytrClXARzzpredyARztrClXAR
22 dfss2 predyARtrClXARzzpredyARztrClXAR
23 22 ralbii ytrClXARpredyARtrClXARytrClXARzzpredyARztrClXAR
24 21 23 sylibr RFrSeAXAytrClXARpredyARtrClXAR
25 df-bnj19 TrFotrClXARARytrClXARpredyARtrClXAR
26 24 25 sylibr RFrSeAXATrFotrClXARAR