Metamath Proof Explorer


Theorem br1cnvxrn2

Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Assertion br1cnvxrn2 B V A R S -1 B y z A = y z B R y B S z

Proof

Step Hyp Ref Expression
1 xrnrel Rel R S
2 1 relbrcnv A R S -1 B B R S A
3 brxrn2 B V B R S A y z A = y z B R y B S z
4 2 3 syl5bb B V A R S -1 B y z A = y z B R y B S z