Metamath Proof Explorer


Theorem br1cnvxrn2

Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Assertion br1cnvxrn2 ( 𝐵𝑉 → ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 xrnrel Rel ( 𝑅𝑆 )
2 1 relbrcnv ( 𝐴 ( 𝑅𝑆 ) 𝐵𝐵 ( 𝑅𝑆 ) 𝐴 )
3 brxrn2 ( 𝐵𝑉 → ( 𝐵 ( 𝑅𝑆 ) 𝐴 ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )
4 2 3 syl5bb ( 𝐵𝑉 → ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )