Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | br1cnvxrn2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel | ⊢ Rel ( 𝑅 ⋉ 𝑆 ) | |
2 | 1 | relbrcnv | ⊢ ( 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ↔ 𝐵 ( 𝑅 ⋉ 𝑆 ) 𝐴 ) |
3 | brxrn2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ( 𝑅 ⋉ 𝑆 ) 𝐴 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
4 | 2 3 | syl5bb | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) |