Metamath Proof Explorer


Theorem elec1cnvxrn2

Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Assertion elec1cnvxrn2 ( 𝐵𝑉 → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 relcnv Rel ( 𝑅𝑆 )
2 relelec ( Rel ( 𝑅𝑆 ) → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ 𝐴 ( 𝑅𝑆 ) 𝐵 ) )
3 1 2 ax-mp ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ 𝐴 ( 𝑅𝑆 ) 𝐵 )
4 br1cnvxrn2 ( 𝐵𝑉 → ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )
5 3 4 syl5bb ( 𝐵𝑉 → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ ∃ 𝑦𝑧 ( 𝐴 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) )