Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elec1cnvxrn2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ [ 𝐴 ] ◡ ( 𝑅 ⋉ 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv | ⊢ Rel ◡ ( 𝑅 ⋉ 𝑆 ) | |
2 | relelec | ⊢ ( Rel ◡ ( 𝑅 ⋉ 𝑆 ) → ( 𝐵 ∈ [ 𝐴 ] ◡ ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐵 ∈ [ 𝐴 ] ◡ ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ) |
4 | br1cnvxrn2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ◡ ( 𝑅 ⋉ 𝑆 ) 𝐵 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
5 | 3 4 | syl5bb | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ [ 𝐴 ] ◡ ( 𝑅 ⋉ 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝐴 = 〈 𝑦 , 𝑧 〉 ∧ 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ) |