Metamath Proof Explorer


Theorem elec1cnvxrn2

Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Assertion elec1cnvxrn2
|- ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )

Proof

Step Hyp Ref Expression
1 relcnv
 |-  Rel `' ( R |X. S )
2 relelec
 |-  ( Rel `' ( R |X. S ) -> ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B ) )
3 1 2 ax-mp
 |-  ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B )
4 br1cnvxrn2
 |-  ( B e. V -> ( A `' ( R |X. S ) B <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )
5 3 4 syl5bb
 |-  ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )