Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elec1cnvxrn2 | |- ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' ( R |X. S ) |
|
| 2 | relelec | |- ( Rel `' ( R |X. S ) -> ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B ) ) |
|
| 3 | 1 2 | ax-mp | |- ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B ) |
| 4 | br1cnvxrn2 | |- ( B e. V -> ( A `' ( R |X. S ) B <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |
|
| 5 | 3 4 | bitrid | |- ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |