Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elec1cnvxrn2 | |- ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv | |- Rel `' ( R |X. S ) |
|
2 | relelec | |- ( Rel `' ( R |X. S ) -> ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B ) ) |
|
3 | 1 2 | ax-mp | |- ( B e. [ A ] `' ( R |X. S ) <-> A `' ( R |X. S ) B ) |
4 | br1cnvxrn2 | |- ( B e. V -> ( A `' ( R |X. S ) B <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |
|
5 | 3 4 | syl5bb | |- ( B e. V -> ( B e. [ A ] `' ( R |X. S ) <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) ) |