Metamath Proof Explorer


Theorem elec1cnvxrn2

Description: Elementhood in the converse range Cartesian product coset of A . (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Assertion elec1cnvxrn2 B V B A R S -1 y z A = y z B R y B S z

Proof

Step Hyp Ref Expression
1 relcnv Rel R S -1
2 relelec Rel R S -1 B A R S -1 A R S -1 B
3 1 2 ax-mp B A R S -1 A R S -1 B
4 br1cnvxrn2 B V A R S -1 B y z A = y z B R y B S z
5 3 4 syl5bb B V B A R S -1 y z A = y z B R y B S z