Metamath Proof Explorer


Theorem br1cossxrncnvssrres

Description: <. B , C >. and <. D , E >. are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021)

Ref Expression
Assertion br1cossxrncnvssrres BVCWDXEYBCRS-1ADEuACuuRBEuuRD

Proof

Step Hyp Ref Expression
1 br1cossxrnres BVCWDXEYBCRS-1ADEuAuS-1CuRBuS-1EuRD
2 brcnvssr uVuS-1CCu
3 2 elv uS-1CCu
4 3 anbi1i uS-1CuRBCuuRB
5 brcnvssr uVuS-1EEu
6 5 elv uS-1EEu
7 6 anbi1i uS-1EuRDEuuRD
8 4 7 anbi12i uS-1CuRBuS-1EuRDCuuRBEuuRD
9 8 rexbii uAuS-1CuRBuS-1EuRDuACuuRBEuuRD
10 1 9 bitrdi BVCWDXEYBCRS-1ADEuACuuRBEuuRD