Metamath Proof Explorer


Theorem br1cossxrnidres

Description: <. B , C >. and <. D , E >. are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)

Ref Expression
Assertion br1cossxrnidres BVCWDXEYBCRIADEuAu=CuRBu=EuRD

Proof

Step Hyp Ref Expression
1 br1cossxrnres BVCWDXEYBCRIADEuAuICuRBuIEuRD
2 ideq2 uVuICu=C
3 2 elv uICu=C
4 3 anbi1i uICuRBu=CuRB
5 ideq2 uVuIEu=E
6 5 elv uIEu=E
7 6 anbi1i uIEuRDu=EuRD
8 4 7 anbi12i uICuRBuIEuRDu=CuRBu=EuRD
9 8 rexbii uAuICuRBuIEuRDuAu=CuRBu=EuRD
10 1 9 bitrdi BVCWDXEYBCRIADEuAu=CuRBu=EuRD