Metamath Proof Explorer


Theorem br1cossxrnidres

Description: <. B , C >. and <. D , E >. are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)

Ref Expression
Assertion br1cossxrnidres B V C W D X E Y B C R I A D E u A u = C u R B u = E u R D

Proof

Step Hyp Ref Expression
1 br1cossxrnres B V C W D X E Y B C R I A D E u A u I C u R B u I E u R D
2 ideq2 u V u I C u = C
3 2 elv u I C u = C
4 3 anbi1i u I C u R B u = C u R B
5 ideq2 u V u I E u = E
6 5 elv u I E u = E
7 6 anbi1i u I E u R D u = E u R D
8 4 7 anbi12i u I C u R B u I E u R D u = C u R B u = E u R D
9 8 rexbii u A u I C u R B u I E u R D u A u = C u R B u = E u R D
10 1 9 bitrdi B V C W D X E Y B C R I A D E u A u = C u R B u = E u R D