Metamath Proof Explorer


Theorem br1cossxrnidres

Description: <. B , C >. and <. D , E >. are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)

Ref Expression
Assertion br1cossxrnidres
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( _I |` A ) ) <. D , E >. <-> E. u e. A ( ( u = C /\ u R B ) /\ ( u = E /\ u R D ) ) ) )

Proof

Step Hyp Ref Expression
1 br1cossxrnres
 |-  ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( _I |` A ) ) <. D , E >. <-> E. u e. A ( ( u _I C /\ u R B ) /\ ( u _I E /\ u R D ) ) ) )
2 ideq2
 |-  ( u e. _V -> ( u _I C <-> u = C ) )
3 2 elv
 |-  ( u _I C <-> u = C )
4 3 anbi1i
 |-  ( ( u _I C /\ u R B ) <-> ( u = C /\ u R B ) )
5 ideq2
 |-  ( u e. _V -> ( u _I E <-> u = E ) )
6 5 elv
 |-  ( u _I E <-> u = E )
7 6 anbi1i
 |-  ( ( u _I E /\ u R D ) <-> ( u = E /\ u R D ) )
8 4 7 anbi12i
 |-  ( ( ( u _I C /\ u R B ) /\ ( u _I E /\ u R D ) ) <-> ( ( u = C /\ u R B ) /\ ( u = E /\ u R D ) ) )
9 8 rexbii
 |-  ( E. u e. A ( ( u _I C /\ u R B ) /\ ( u _I E /\ u R D ) ) <-> E. u e. A ( ( u = C /\ u R B ) /\ ( u = E /\ u R D ) ) )
10 1 9 bitrdi
 |-  ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( _I |` A ) ) <. D , E >. <-> E. u e. A ( ( u = C /\ u R B ) /\ ( u = E /\ u R D ) ) ) )