Metamath Proof Explorer


Theorem brab1

Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)

Ref Expression
Assertion brab1 xRAxz|zRA

Proof

Step Hyp Ref Expression
1 breq1 z=yzRAyRA
2 breq1 y=xyRAxRA
3 1 2 sbcie2g xV[˙x/z]˙zRAxRA
4 3 elv [˙x/z]˙zRAxRA
5 df-sbc [˙x/z]˙zRAxz|zRA
6 4 5 bitr3i xRAxz|zRA