Metamath Proof Explorer


Theorem brabg2

Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses brabg2.1 x = A φ ψ
brabg2.2 y = B ψ χ
brabg2.3 R = x y | φ
brabg2.4 χ A C
Assertion brabg2 B D A R B χ

Proof

Step Hyp Ref Expression
1 brabg2.1 x = A φ ψ
2 brabg2.2 y = B ψ χ
3 brabg2.3 R = x y | φ
4 brabg2.4 χ A C
5 3 relopabiv Rel R
6 5 brrelex1i A R B A V
7 1 2 3 brabg A V B D A R B χ
8 7 biimpd A V B D A R B χ
9 8 ex A V B D A R B χ
10 9 com3l B D A R B A V χ
11 6 10 mpdi B D A R B χ
12 1 2 3 brabg A C B D A R B χ
13 12 exbiri A C B D χ A R B
14 13 com3l B D χ A C A R B
15 4 14 mpdi B D χ A R B
16 11 15 impbid B D A R B χ