Metamath Proof Explorer


Theorem brabg2

Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses brabg2.1 x=Aφψ
brabg2.2 y=Bψχ
brabg2.3 R=xy|φ
brabg2.4 χAC
Assertion brabg2 BDARBχ

Proof

Step Hyp Ref Expression
1 brabg2.1 x=Aφψ
2 brabg2.2 y=Bψχ
3 brabg2.3 R=xy|φ
4 brabg2.4 χAC
5 3 relopabiv RelR
6 5 brrelex1i ARBAV
7 1 2 3 brabg AVBDARBχ
8 7 biimpd AVBDARBχ
9 8 ex AVBDARBχ
10 9 com3l BDARBAVχ
11 6 10 mpdi BDARBχ
12 1 2 3 brabg ACBDARBχ
13 12 exbiri ACBDχARB
14 13 com3l BDχACARB
15 4 14 mpdi BDχARB
16 11 15 impbid BDARBχ