| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brabg2.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | brabg2.2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | brabg2.3 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝜑 } | 
						
							| 4 |  | brabg2.4 | ⊢ ( 𝜒  →  𝐴  ∈  𝐶 ) | 
						
							| 5 | 3 | relopabiv | ⊢ Rel  𝑅 | 
						
							| 6 | 5 | brrelex1i | ⊢ ( 𝐴 𝑅 𝐵  →  𝐴  ∈  V ) | 
						
							| 7 | 1 2 3 | brabg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴 𝑅 𝐵  ↔  𝜒 ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴 𝑅 𝐵  →  𝜒 ) ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐴  ∈  V  →  ( 𝐵  ∈  𝐷  →  ( 𝐴 𝑅 𝐵  →  𝜒 ) ) ) | 
						
							| 10 | 9 | com3l | ⊢ ( 𝐵  ∈  𝐷  →  ( 𝐴 𝑅 𝐵  →  ( 𝐴  ∈  V  →  𝜒 ) ) ) | 
						
							| 11 | 6 10 | mpdi | ⊢ ( 𝐵  ∈  𝐷  →  ( 𝐴 𝑅 𝐵  →  𝜒 ) ) | 
						
							| 12 | 1 2 3 | brabg | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴 𝑅 𝐵  ↔  𝜒 ) ) | 
						
							| 13 | 12 | exbiri | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝐵  ∈  𝐷  →  ( 𝜒  →  𝐴 𝑅 𝐵 ) ) ) | 
						
							| 14 | 13 | com3l | ⊢ ( 𝐵  ∈  𝐷  →  ( 𝜒  →  ( 𝐴  ∈  𝐶  →  𝐴 𝑅 𝐵 ) ) ) | 
						
							| 15 | 4 14 | mpdi | ⊢ ( 𝐵  ∈  𝐷  →  ( 𝜒  →  𝐴 𝑅 𝐵 ) ) | 
						
							| 16 | 11 15 | impbid | ⊢ ( 𝐵  ∈  𝐷  →  ( 𝐴 𝑅 𝐵  ↔  𝜒 ) ) |