Metamath Proof Explorer


Theorem opelopab3

Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011)

Ref Expression
Hypotheses opelopab3.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
opelopab3.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
opelopab3.3 ( 𝜒𝐴𝐶 )
Assertion opelopab3 ( 𝐵𝐷 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 opelopab3.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 opelopab3.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 opelopab3.3 ( 𝜒𝐴𝐶 )
4 elopaelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )
5 opelxp1 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) → 𝐴 ∈ V )
6 4 5 syl ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → 𝐴 ∈ V )
7 6 anim1i ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∧ 𝐵𝐷 ) → ( 𝐴 ∈ V ∧ 𝐵𝐷 ) )
8 7 ancoms ( ( 𝐵𝐷 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ) → ( 𝐴 ∈ V ∧ 𝐵𝐷 ) )
9 3 elexd ( 𝜒𝐴 ∈ V )
10 9 anim1i ( ( 𝜒𝐵𝐷 ) → ( 𝐴 ∈ V ∧ 𝐵𝐷 ) )
11 10 ancoms ( ( 𝐵𝐷𝜒 ) → ( 𝐴 ∈ V ∧ 𝐵𝐷 ) )
12 1 2 opelopabg ( ( 𝐴 ∈ V ∧ 𝐵𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )
13 8 11 12 pm5.21nd ( 𝐵𝐷 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )