| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelopab3.1 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 2 |  | opelopab3.2 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 3 |  | opelopab3.3 |  |-  ( ch -> A e. C ) | 
						
							| 4 |  | elopaelxp |  |-  ( <. A , B >. e. { <. x , y >. | ph } -> <. A , B >. e. ( _V X. _V ) ) | 
						
							| 5 |  | opelxp1 |  |-  ( <. A , B >. e. ( _V X. _V ) -> A e. _V ) | 
						
							| 6 | 4 5 | syl |  |-  ( <. A , B >. e. { <. x , y >. | ph } -> A e. _V ) | 
						
							| 7 | 6 | anim1i |  |-  ( ( <. A , B >. e. { <. x , y >. | ph } /\ B e. D ) -> ( A e. _V /\ B e. D ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( B e. D /\ <. A , B >. e. { <. x , y >. | ph } ) -> ( A e. _V /\ B e. D ) ) | 
						
							| 9 | 3 | elexd |  |-  ( ch -> A e. _V ) | 
						
							| 10 | 9 | anim1i |  |-  ( ( ch /\ B e. D ) -> ( A e. _V /\ B e. D ) ) | 
						
							| 11 | 10 | ancoms |  |-  ( ( B e. D /\ ch ) -> ( A e. _V /\ B e. D ) ) | 
						
							| 12 | 1 2 | opelopabg |  |-  ( ( A e. _V /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) | 
						
							| 13 | 8 11 12 | pm5.21nd |  |-  ( B e. D -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |