Metamath Proof Explorer


Theorem opelopab3

Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011)

Ref Expression
Hypotheses opelopab3.1
|- ( x = A -> ( ph <-> ps ) )
opelopab3.2
|- ( y = B -> ( ps <-> ch ) )
opelopab3.3
|- ( ch -> A e. C )
Assertion opelopab3
|- ( B e. D -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )

Proof

Step Hyp Ref Expression
1 opelopab3.1
 |-  ( x = A -> ( ph <-> ps ) )
2 opelopab3.2
 |-  ( y = B -> ( ps <-> ch ) )
3 opelopab3.3
 |-  ( ch -> A e. C )
4 elopaelxp
 |-  ( <. A , B >. e. { <. x , y >. | ph } -> <. A , B >. e. ( _V X. _V ) )
5 opelxp1
 |-  ( <. A , B >. e. ( _V X. _V ) -> A e. _V )
6 4 5 syl
 |-  ( <. A , B >. e. { <. x , y >. | ph } -> A e. _V )
7 6 anim1i
 |-  ( ( <. A , B >. e. { <. x , y >. | ph } /\ B e. D ) -> ( A e. _V /\ B e. D ) )
8 7 ancoms
 |-  ( ( B e. D /\ <. A , B >. e. { <. x , y >. | ph } ) -> ( A e. _V /\ B e. D ) )
9 3 elexd
 |-  ( ch -> A e. _V )
10 9 anim1i
 |-  ( ( ch /\ B e. D ) -> ( A e. _V /\ B e. D ) )
11 10 ancoms
 |-  ( ( B e. D /\ ch ) -> ( A e. _V /\ B e. D ) )
12 1 2 opelopabg
 |-  ( ( A e. _V /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )
13 8 11 12 pm5.21nd
 |-  ( B e. D -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )