Step |
Hyp |
Ref |
Expression |
1 |
|
opelopab3.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
opelopab3.2 |
|- ( y = B -> ( ps <-> ch ) ) |
3 |
|
opelopab3.3 |
|- ( ch -> A e. C ) |
4 |
|
elopaelxp |
|- ( <. A , B >. e. { <. x , y >. | ph } -> <. A , B >. e. ( _V X. _V ) ) |
5 |
|
opelxp1 |
|- ( <. A , B >. e. ( _V X. _V ) -> A e. _V ) |
6 |
4 5
|
syl |
|- ( <. A , B >. e. { <. x , y >. | ph } -> A e. _V ) |
7 |
6
|
anim1i |
|- ( ( <. A , B >. e. { <. x , y >. | ph } /\ B e. D ) -> ( A e. _V /\ B e. D ) ) |
8 |
7
|
ancoms |
|- ( ( B e. D /\ <. A , B >. e. { <. x , y >. | ph } ) -> ( A e. _V /\ B e. D ) ) |
9 |
3
|
elexd |
|- ( ch -> A e. _V ) |
10 |
9
|
anim1i |
|- ( ( ch /\ B e. D ) -> ( A e. _V /\ B e. D ) ) |
11 |
10
|
ancoms |
|- ( ( B e. D /\ ch ) -> ( A e. _V /\ B e. D ) ) |
12 |
1 2
|
opelopabg |
|- ( ( A e. _V /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |
13 |
8 11 12
|
pm5.21nd |
|- ( B e. D -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |