Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( G o. F ) = ( H o. F ) ) |
2 |
1
|
fveq1d |
|- ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( G o. F ) ` y ) = ( ( H o. F ) ` y ) ) |
3 |
|
simpl1 |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> F : A -onto-> B ) |
4 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
5 |
3 4
|
syl |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> F : A --> B ) |
6 |
|
fvco3 |
|- ( ( F : A --> B /\ y e. A ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) |
7 |
5 6
|
sylan |
|- ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) |
8 |
|
fvco3 |
|- ( ( F : A --> B /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
9 |
5 8
|
sylan |
|- ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) |
10 |
2 7 9
|
3eqtr3d |
|- ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) ) |
11 |
10
|
ralrimiva |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) ) |
12 |
|
fveq2 |
|- ( ( F ` y ) = x -> ( G ` ( F ` y ) ) = ( G ` x ) ) |
13 |
|
fveq2 |
|- ( ( F ` y ) = x -> ( H ` ( F ` y ) ) = ( H ` x ) ) |
14 |
12 13
|
eqeq12d |
|- ( ( F ` y ) = x -> ( ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> ( G ` x ) = ( H ` x ) ) ) |
15 |
14
|
cbvfo |
|- ( F : A -onto-> B -> ( A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) |
16 |
3 15
|
syl |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> ( A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) |
17 |
11 16
|
mpbid |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> A. x e. B ( G ` x ) = ( H ` x ) ) |
18 |
|
eqfnfv |
|- ( ( G Fn B /\ H Fn B ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) |
19 |
18
|
3adant1 |
|- ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) |
20 |
19
|
adantr |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) |
21 |
17 20
|
mpbird |
|- ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> G = H ) |