| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr |  |-  ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( G o. F ) = ( H o. F ) ) | 
						
							| 2 | 1 | fveq1d |  |-  ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( G o. F ) ` y ) = ( ( H o. F ) ` y ) ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> F : A -onto-> B ) | 
						
							| 4 |  | fof |  |-  ( F : A -onto-> B -> F : A --> B ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> F : A --> B ) | 
						
							| 6 |  | fvco3 |  |-  ( ( F : A --> B /\ y e. A ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) | 
						
							| 8 |  | fvco3 |  |-  ( ( F : A --> B /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) | 
						
							| 9 | 5 8 | sylan |  |-  ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( ( H o. F ) ` y ) = ( H ` ( F ` y ) ) ) | 
						
							| 10 | 2 7 9 | 3eqtr3d |  |-  ( ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) /\ y e. A ) -> ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) ) | 
						
							| 11 | 10 | ralrimiva |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( ( F ` y ) = x -> ( G ` ( F ` y ) ) = ( G ` x ) ) | 
						
							| 13 |  | fveq2 |  |-  ( ( F ` y ) = x -> ( H ` ( F ` y ) ) = ( H ` x ) ) | 
						
							| 14 | 12 13 | eqeq12d |  |-  ( ( F ` y ) = x -> ( ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> ( G ` x ) = ( H ` x ) ) ) | 
						
							| 15 | 14 | cbvfo |  |-  ( F : A -onto-> B -> ( A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) | 
						
							| 16 | 3 15 | syl |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> ( A. y e. A ( G ` ( F ` y ) ) = ( H ` ( F ` y ) ) <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) | 
						
							| 17 | 11 16 | mpbid |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> A. x e. B ( G ` x ) = ( H ` x ) ) | 
						
							| 18 |  | eqfnfv |  |-  ( ( G Fn B /\ H Fn B ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) | 
						
							| 19 | 18 | 3adant1 |  |-  ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> ( G = H <-> A. x e. B ( G ` x ) = ( H ` x ) ) ) | 
						
							| 21 | 17 20 | mpbird |  |-  ( ( ( F : A -onto-> B /\ G Fn B /\ H Fn B ) /\ ( G o. F ) = ( H o. F ) ) -> G = H ) |