Metamath Proof Explorer


Theorem cocanfo

Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion cocanfo F : A onto B G Fn B H Fn B G F = H F G = H

Proof

Step Hyp Ref Expression
1 simplr F : A onto B G Fn B H Fn B G F = H F y A G F = H F
2 1 fveq1d F : A onto B G Fn B H Fn B G F = H F y A G F y = H F y
3 simpl1 F : A onto B G Fn B H Fn B G F = H F F : A onto B
4 fof F : A onto B F : A B
5 3 4 syl F : A onto B G Fn B H Fn B G F = H F F : A B
6 fvco3 F : A B y A G F y = G F y
7 5 6 sylan F : A onto B G Fn B H Fn B G F = H F y A G F y = G F y
8 fvco3 F : A B y A H F y = H F y
9 5 8 sylan F : A onto B G Fn B H Fn B G F = H F y A H F y = H F y
10 2 7 9 3eqtr3d F : A onto B G Fn B H Fn B G F = H F y A G F y = H F y
11 10 ralrimiva F : A onto B G Fn B H Fn B G F = H F y A G F y = H F y
12 fveq2 F y = x G F y = G x
13 fveq2 F y = x H F y = H x
14 12 13 eqeq12d F y = x G F y = H F y G x = H x
15 14 cbvfo F : A onto B y A G F y = H F y x B G x = H x
16 3 15 syl F : A onto B G Fn B H Fn B G F = H F y A G F y = H F y x B G x = H x
17 11 16 mpbid F : A onto B G Fn B H Fn B G F = H F x B G x = H x
18 eqfnfv G Fn B H Fn B G = H x B G x = H x
19 18 3adant1 F : A onto B G Fn B H Fn B G = H x B G x = H x
20 19 adantr F : A onto B G Fn B H Fn B G F = H F G = H x B G x = H x
21 17 20 mpbird F : A onto B G Fn B H Fn B G F = H F G = H