Metamath Proof Explorer


Theorem opelopab3

Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011)

Ref Expression
Hypotheses opelopab3.1 x = A φ ψ
opelopab3.2 y = B ψ χ
opelopab3.3 χ A C
Assertion opelopab3 B D A B x y | φ χ

Proof

Step Hyp Ref Expression
1 opelopab3.1 x = A φ ψ
2 opelopab3.2 y = B ψ χ
3 opelopab3.3 χ A C
4 elopaelxp A B x y | φ A B V × V
5 opelxp1 A B V × V A V
6 4 5 syl A B x y | φ A V
7 6 anim1i A B x y | φ B D A V B D
8 7 ancoms B D A B x y | φ A V B D
9 3 elexd χ A V
10 9 anim1i χ B D A V B D
11 10 ancoms B D χ A V B D
12 1 2 opelopabg A V B D A B x y | φ χ
13 8 11 12 pm5.21nd B D A B x y | φ χ