Metamath Proof Explorer


Theorem opelopab3

Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011)

Ref Expression
Hypotheses opelopab3.1 x=Aφψ
opelopab3.2 y=Bψχ
opelopab3.3 χAC
Assertion opelopab3 BDABxy|φχ

Proof

Step Hyp Ref Expression
1 opelopab3.1 x=Aφψ
2 opelopab3.2 y=Bψχ
3 opelopab3.3 χAC
4 elopaelxp ABxy|φABV×V
5 opelxp1 ABV×VAV
6 4 5 syl ABxy|φAV
7 6 anim1i ABxy|φBDAVBD
8 7 ancoms BDABxy|φAVBD
9 3 elexd χAV
10 9 anim1i χBDAVBD
11 10 ancoms BDχAVBD
12 1 2 opelopabg AVBDABxy|φχ
13 8 11 12 pm5.21nd BDABxy|φχ