| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brabg2.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
brabg2.2 |
|- ( y = B -> ( ps <-> ch ) ) |
| 3 |
|
brabg2.3 |
|- R = { <. x , y >. | ph } |
| 4 |
|
brabg2.4 |
|- ( ch -> A e. C ) |
| 5 |
3
|
relopabiv |
|- Rel R |
| 6 |
5
|
brrelex1i |
|- ( A R B -> A e. _V ) |
| 7 |
1 2 3
|
brabg |
|- ( ( A e. _V /\ B e. D ) -> ( A R B <-> ch ) ) |
| 8 |
7
|
biimpd |
|- ( ( A e. _V /\ B e. D ) -> ( A R B -> ch ) ) |
| 9 |
8
|
ex |
|- ( A e. _V -> ( B e. D -> ( A R B -> ch ) ) ) |
| 10 |
9
|
com3l |
|- ( B e. D -> ( A R B -> ( A e. _V -> ch ) ) ) |
| 11 |
6 10
|
mpdi |
|- ( B e. D -> ( A R B -> ch ) ) |
| 12 |
1 2 3
|
brabg |
|- ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) ) |
| 13 |
12
|
exbiri |
|- ( A e. C -> ( B e. D -> ( ch -> A R B ) ) ) |
| 14 |
13
|
com3l |
|- ( B e. D -> ( ch -> ( A e. C -> A R B ) ) ) |
| 15 |
4 14
|
mpdi |
|- ( B e. D -> ( ch -> A R B ) ) |
| 16 |
11 15
|
impbid |
|- ( B e. D -> ( A R B <-> ch ) ) |