Metamath Proof Explorer


Theorem brabg2

Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses brabg2.1
|- ( x = A -> ( ph <-> ps ) )
brabg2.2
|- ( y = B -> ( ps <-> ch ) )
brabg2.3
|- R = { <. x , y >. | ph }
brabg2.4
|- ( ch -> A e. C )
Assertion brabg2
|- ( B e. D -> ( A R B <-> ch ) )

Proof

Step Hyp Ref Expression
1 brabg2.1
 |-  ( x = A -> ( ph <-> ps ) )
2 brabg2.2
 |-  ( y = B -> ( ps <-> ch ) )
3 brabg2.3
 |-  R = { <. x , y >. | ph }
4 brabg2.4
 |-  ( ch -> A e. C )
5 3 relopabiv
 |-  Rel R
6 5 brrelex1i
 |-  ( A R B -> A e. _V )
7 1 2 3 brabg
 |-  ( ( A e. _V /\ B e. D ) -> ( A R B <-> ch ) )
8 7 biimpd
 |-  ( ( A e. _V /\ B e. D ) -> ( A R B -> ch ) )
9 8 ex
 |-  ( A e. _V -> ( B e. D -> ( A R B -> ch ) ) )
10 9 com3l
 |-  ( B e. D -> ( A R B -> ( A e. _V -> ch ) ) )
11 6 10 mpdi
 |-  ( B e. D -> ( A R B -> ch ) )
12 1 2 3 brabg
 |-  ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) )
13 12 exbiri
 |-  ( A e. C -> ( B e. D -> ( ch -> A R B ) ) )
14 13 com3l
 |-  ( B e. D -> ( ch -> ( A e. C -> A R B ) ) )
15 4 14 mpdi
 |-  ( B e. D -> ( ch -> A R B ) )
16 11 15 impbid
 |-  ( B e. D -> ( A R B <-> ch ) )