| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brabg2.1 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 2 |  | brabg2.2 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 3 |  | brabg2.3 |  |-  R = { <. x , y >. | ph } | 
						
							| 4 |  | brabg2.4 |  |-  ( ch -> A e. C ) | 
						
							| 5 | 3 | relopabiv |  |-  Rel R | 
						
							| 6 | 5 | brrelex1i |  |-  ( A R B -> A e. _V ) | 
						
							| 7 | 1 2 3 | brabg |  |-  ( ( A e. _V /\ B e. D ) -> ( A R B <-> ch ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( ( A e. _V /\ B e. D ) -> ( A R B -> ch ) ) | 
						
							| 9 | 8 | ex |  |-  ( A e. _V -> ( B e. D -> ( A R B -> ch ) ) ) | 
						
							| 10 | 9 | com3l |  |-  ( B e. D -> ( A R B -> ( A e. _V -> ch ) ) ) | 
						
							| 11 | 6 10 | mpdi |  |-  ( B e. D -> ( A R B -> ch ) ) | 
						
							| 12 | 1 2 3 | brabg |  |-  ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) ) | 
						
							| 13 | 12 | exbiri |  |-  ( A e. C -> ( B e. D -> ( ch -> A R B ) ) ) | 
						
							| 14 | 13 | com3l |  |-  ( B e. D -> ( ch -> ( A e. C -> A R B ) ) ) | 
						
							| 15 | 4 14 | mpdi |  |-  ( B e. D -> ( ch -> A R B ) ) | 
						
							| 16 | 11 15 | impbid |  |-  ( B e. D -> ( A R B <-> ch ) ) |