Metamath Proof Explorer


Theorem brabidgaw

Description: The law of concretion for a binary relation. Special case of brabga . Version of brabidga with a disjoint variable condition, which does not require ax-13 . (Contributed by Peter Mazsa, 24-Nov-2018) (Revised by Gino Giotto, 2-Apr-2024)

Ref Expression
Hypothesis brabidgaw.1 R = x y | φ
Assertion brabidgaw x R y φ

Proof

Step Hyp Ref Expression
1 brabidgaw.1 R = x y | φ
2 1 breqi x R y x x y | φ y
3 df-br x x y | φ y x y x y | φ
4 opabidw x y x y | φ φ
5 2 3 4 3bitri x R y φ