Metamath Proof Explorer


Theorem brabidgaw

Description: The law of concretion for a binary relation. Special case of brabga . Version of brabidga with a disjoint variable condition, which does not require ax-13 . (Contributed by Peter Mazsa, 24-Nov-2018) (Revised by Gino Giotto, 2-Apr-2024)

Ref Expression
Hypothesis brabidgaw.1
|- R = { <. x , y >. | ph }
Assertion brabidgaw
|- ( x R y <-> ph )

Proof

Step Hyp Ref Expression
1 brabidgaw.1
 |-  R = { <. x , y >. | ph }
2 1 breqi
 |-  ( x R y <-> x { <. x , y >. | ph } y )
3 df-br
 |-  ( x { <. x , y >. | ph } y <-> <. x , y >. e. { <. x , y >. | ph } )
4 opabidw
 |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph )
5 2 3 4 3bitri
 |-  ( x R y <-> ph )