Metamath Proof Explorer


Theorem brabidga

Description: The law of concretion for a binary relation. Special case of brabga . Usage of this theorem is discouraged because it depends on ax-13 , see brabidgaw for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018) (New usage is discouraged.)

Ref Expression
Hypothesis brabidga.1
|- R = { <. x , y >. | ph }
Assertion brabidga
|- ( x R y <-> ph )

Proof

Step Hyp Ref Expression
1 brabidga.1
 |-  R = { <. x , y >. | ph }
2 1 breqi
 |-  ( x R y <-> x { <. x , y >. | ph } y )
3 df-br
 |-  ( x { <. x , y >. | ph } y <-> <. x , y >. e. { <. x , y >. | ph } )
4 opabid
 |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph )
5 2 3 4 3bitri
 |-  ( x R y <-> ph )