Description: The law of concretion for a binary relation. Special case of brabga . Usage of this theorem is discouraged because it depends on ax-13 , see brabidgaw for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brabidga.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| Assertion | brabidga | ⊢ ( 𝑥 𝑅 𝑦 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brabidga.1 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 2 | 1 | breqi | ⊢ ( 𝑥 𝑅 𝑦 ↔ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑦 ) |
| 3 | df-br | ⊢ ( 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) | |
| 4 | opabid | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜑 ) | |
| 5 | 2 3 4 | 3bitri | ⊢ ( 𝑥 𝑅 𝑦 ↔ 𝜑 ) |