Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | inxp2 | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp | ⊢ Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) | |
2 | dfrel4v | ⊢ ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 } ) | |
3 | 1 2 | mpbi | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 } |
4 | brinxp2 | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) ) | |
5 | 4 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) } |
6 | 3 5 | eqtri | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) } |