Metamath Proof Explorer


Theorem inxp2

Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019)

Ref Expression
Assertion inxp2 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 𝑅 𝑦 ) }

Proof

Step Hyp Ref Expression
1 relinxp Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) )
2 dfrel4v ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 } )
3 1 2 mpbi ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 }
4 brinxp2 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 𝑅 𝑦 ) )
5 4 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 𝑅 𝑦 ) }
6 3 5 eqtri ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑥 𝑅 𝑦 ) }