Metamath Proof Explorer


Theorem inxp2

Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019)

Ref Expression
Assertion inxp2 RA×B=xy|xAyBxRy

Proof

Step Hyp Ref Expression
1 relinxp RelRA×B
2 dfrel4v RelRA×BRA×B=xy|xRA×By
3 1 2 mpbi RA×B=xy|xRA×By
4 brinxp2 xRA×ByxAyBxRy
5 4 opabbii xy|xRA×By=xy|xAyBxRy
6 3 5 eqtri RA×B=xy|xAyBxRy