Step |
Hyp |
Ref |
Expression |
1 |
|
relinxp |
|- Rel ( R i^i ( A X. B ) ) |
2 |
|
dfrel4v |
|- ( Rel ( R i^i ( A X. B ) ) <-> ( R i^i ( A X. B ) ) = { <. x , y >. | x ( R i^i ( A X. B ) ) y } ) |
3 |
1 2
|
mpbi |
|- ( R i^i ( A X. B ) ) = { <. x , y >. | x ( R i^i ( A X. B ) ) y } |
4 |
|
brinxp2 |
|- ( x ( R i^i ( A X. B ) ) y <-> ( ( x e. A /\ y e. B ) /\ x R y ) ) |
5 |
4
|
opabbii |
|- { <. x , y >. | x ( R i^i ( A X. B ) ) y } = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ x R y ) } |
6 |
3 5
|
eqtri |
|- ( R i^i ( A X. B ) ) = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ x R y ) } |