Metamath Proof Explorer


Theorem brcnvepres

Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018)

Ref Expression
Assertion brcnvepres B V C W B E -1 A C B A C B

Proof

Step Hyp Ref Expression
1 brres C W B E -1 A C B A B E -1 C
2 brcnvep B V B E -1 C C B
3 2 anbi2d B V B A B E -1 C B A C B
4 1 3 sylan9bbr B V C W B E -1 A C B A C B