Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
brcnvepres
Next ⟩
brres2
Metamath Proof Explorer
Ascii
Unicode
Theorem
brcnvepres
Description:
Restricted converse epsilon binary relation.
(Contributed by
Peter Mazsa
, 10-Feb-2018)
Ref
Expression
Assertion
brcnvepres
⊢
B
∈
V
∧
C
∈
W
→
B
E
-1
↾
A
C
↔
B
∈
A
∧
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
brres
⊢
C
∈
W
→
B
E
-1
↾
A
C
↔
B
∈
A
∧
B
E
-1
C
2
brcnvep
⊢
B
∈
V
→
B
E
-1
C
↔
C
∈
B
3
2
anbi2d
⊢
B
∈
V
→
B
∈
A
∧
B
E
-1
C
↔
B
∈
A
∧
C
∈
B
4
1
3
sylan9bbr
⊢
B
∈
V
∧
C
∈
W
→
B
E
-1
↾
A
C
↔
B
∈
A
∧
C
∈
B