Metamath Proof Explorer


Theorem brcnvg

Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 10-Oct-2005)

Ref Expression
Assertion brcnvg ACBDAR-1BBRA

Proof

Step Hyp Ref Expression
1 breq2 x=AyRxyRA
2 breq1 y=ByRABRA
3 df-cnv R-1=xy|yRx
4 1 2 3 brabg ACBDAR-1BBRA