Metamath Proof Explorer


Theorem brdomain

Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brdomain.1 A V
brdomain.2 B V
Assertion brdomain A 𝖣𝗈𝗆𝖺𝗂𝗇 B B = dom A

Proof

Step Hyp Ref Expression
1 brdomain.1 A V
2 brdomain.2 B V
3 1 2 brimage A 𝖨𝗆𝖺𝗀𝖾 1 st V × V B B = 1 st V × V A
4 df-domain 𝖣𝗈𝗆𝖺𝗂𝗇 = 𝖨𝗆𝖺𝗀𝖾 1 st V × V
5 4 breqi A 𝖣𝗈𝗆𝖺𝗂𝗇 B A 𝖨𝗆𝖺𝗀𝖾 1 st V × V B
6 dfdm5 dom A = 1 st V × V A
7 6 eqeq2i B = dom A B = 1 st V × V A
8 3 5 7 3bitr4i A 𝖣𝗈𝗆𝖺𝗂𝗇 B B = dom A