Metamath Proof Explorer


Theorem brpprod3b

Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Hypotheses brpprod3.1 XV
brpprod3.2 YV
brpprod3.3 ZV
Assertion brpprod3b XpprodRSYZzwX=zwzRYwSZ

Proof

Step Hyp Ref Expression
1 brpprod3.1 XV
2 brpprod3.2 YV
3 brpprod3.3 ZV
4 pprodcnveq pprodRS=pprodR-1S-1-1
5 4 breqi XpprodRSYZXpprodR-1S-1-1YZ
6 opex YZV
7 1 6 brcnv XpprodR-1S-1-1YZYZpprodR-1S-1X
8 2 3 1 brpprod3a YZpprodR-1S-1XzwX=zwYR-1zZS-1w
9 7 8 bitri XpprodR-1S-1-1YZzwX=zwYR-1zZS-1w
10 biid X=zwX=zw
11 vex zV
12 2 11 brcnv YR-1zzRY
13 vex wV
14 3 13 brcnv ZS-1wwSZ
15 10 12 14 3anbi123i X=zwYR-1zZS-1wX=zwzRYwSZ
16 15 2exbii zwX=zwYR-1zZS-1wzwX=zwzRYwSZ
17 9 16 bitri XpprodR-1S-1-1YZzwX=zwzRYwSZ
18 5 17 bitri XpprodRSYZzwX=zwzRYwSZ