Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
relsset
Next ⟩
brsset
Metamath Proof Explorer
Ascii
Unicode
Theorem
relsset
Description:
The subset class is a binary relation.
(Contributed by
Scott Fenton
, 31-Mar-2012)
Ref
Expression
Assertion
relsset
⊢
Rel
⁡
𝖲𝖲𝖾𝗍
Proof
Step
Hyp
Ref
Expression
1
df-sset
⊢
𝖲𝖲𝖾𝗍
=
V
×
V
∖
ran
⁡
E
⊗
V
∖
E
2
difss
⊢
V
×
V
∖
ran
⁡
E
⊗
V
∖
E
⊆
V
×
V
3
1
2
eqsstri
⊢
𝖲𝖲𝖾𝗍
⊆
V
×
V
4
df-rel
⊢
Rel
⁡
𝖲𝖲𝖾𝗍
↔
𝖲𝖲𝖾𝗍
⊆
V
×
V
5
3
4
mpbir
⊢
Rel
⁡
𝖲𝖲𝖾𝗍