Metamath Proof Explorer


Theorem relsset

Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion relsset
|- Rel SSet

Proof

Step Hyp Ref Expression
1 df-sset
 |-  SSet = ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) )
2 difss
 |-  ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) C_ ( _V X. _V )
3 1 2 eqsstri
 |-  SSet C_ ( _V X. _V )
4 df-rel
 |-  ( Rel SSet <-> SSet C_ ( _V X. _V ) )
5 3 4 mpbir
 |-  Rel SSet