Step |
Hyp |
Ref |
Expression |
1 |
|
brsset.1 |
|- B e. _V |
2 |
|
relsset |
|- Rel SSet |
3 |
2
|
brrelex1i |
|- ( A SSet B -> A e. _V ) |
4 |
1
|
ssex |
|- ( A C_ B -> A e. _V ) |
5 |
|
breq1 |
|- ( x = A -> ( x SSet B <-> A SSet B ) ) |
6 |
|
sseq1 |
|- ( x = A -> ( x C_ B <-> A C_ B ) ) |
7 |
|
opex |
|- <. x , B >. e. _V |
8 |
7
|
elrn |
|- ( <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. ) |
9 |
|
vex |
|- y e. _V |
10 |
|
vex |
|- x e. _V |
11 |
9 10 1
|
brtxp |
|- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y _E x /\ y ( _V \ _E ) B ) ) |
12 |
|
epel |
|- ( y _E x <-> y e. x ) |
13 |
|
brv |
|- y _V B |
14 |
|
brdif |
|- ( y ( _V \ _E ) B <-> ( y _V B /\ -. y _E B ) ) |
15 |
13 14
|
mpbiran |
|- ( y ( _V \ _E ) B <-> -. y _E B ) |
16 |
1
|
epeli |
|- ( y _E B <-> y e. B ) |
17 |
15 16
|
xchbinx |
|- ( y ( _V \ _E ) B <-> -. y e. B ) |
18 |
12 17
|
anbi12i |
|- ( ( y _E x /\ y ( _V \ _E ) B ) <-> ( y e. x /\ -. y e. B ) ) |
19 |
11 18
|
bitri |
|- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y e. x /\ -. y e. B ) ) |
20 |
19
|
exbii |
|- ( E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> E. y ( y e. x /\ -. y e. B ) ) |
21 |
|
exanali |
|- ( E. y ( y e. x /\ -. y e. B ) <-> -. A. y ( y e. x -> y e. B ) ) |
22 |
8 20 21
|
3bitrri |
|- ( -. A. y ( y e. x -> y e. B ) <-> <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
23 |
22
|
con1bii |
|- ( -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> A. y ( y e. x -> y e. B ) ) |
24 |
|
df-br |
|- ( x SSet B <-> <. x , B >. e. SSet ) |
25 |
|
df-sset |
|- SSet = ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) |
26 |
25
|
eleq2i |
|- ( <. x , B >. e. SSet <-> <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) ) |
27 |
10 1
|
opelvv |
|- <. x , B >. e. ( _V X. _V ) |
28 |
|
eldif |
|- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> ( <. x , B >. e. ( _V X. _V ) /\ -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) ) |
29 |
27 28
|
mpbiran |
|- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
30 |
26 29
|
bitri |
|- ( <. x , B >. e. SSet <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
31 |
24 30
|
bitri |
|- ( x SSet B <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
32 |
|
dfss2 |
|- ( x C_ B <-> A. y ( y e. x -> y e. B ) ) |
33 |
23 31 32
|
3bitr4i |
|- ( x SSet B <-> x C_ B ) |
34 |
5 6 33
|
vtoclbg |
|- ( A e. _V -> ( A SSet B <-> A C_ B ) ) |
35 |
3 4 34
|
pm5.21nii |
|- ( A SSet B <-> A C_ B ) |