| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsset.1 |
|- B e. _V |
| 2 |
|
relsset |
|- Rel SSet |
| 3 |
2
|
brrelex1i |
|- ( A SSet B -> A e. _V ) |
| 4 |
1
|
ssex |
|- ( A C_ B -> A e. _V ) |
| 5 |
|
breq1 |
|- ( x = A -> ( x SSet B <-> A SSet B ) ) |
| 6 |
|
sseq1 |
|- ( x = A -> ( x C_ B <-> A C_ B ) ) |
| 7 |
|
opex |
|- <. x , B >. e. _V |
| 8 |
7
|
elrn |
|- ( <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. ) |
| 9 |
|
vex |
|- y e. _V |
| 10 |
|
vex |
|- x e. _V |
| 11 |
9 10 1
|
brtxp |
|- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y _E x /\ y ( _V \ _E ) B ) ) |
| 12 |
|
epel |
|- ( y _E x <-> y e. x ) |
| 13 |
|
brv |
|- y _V B |
| 14 |
|
brdif |
|- ( y ( _V \ _E ) B <-> ( y _V B /\ -. y _E B ) ) |
| 15 |
13 14
|
mpbiran |
|- ( y ( _V \ _E ) B <-> -. y _E B ) |
| 16 |
1
|
epeli |
|- ( y _E B <-> y e. B ) |
| 17 |
15 16
|
xchbinx |
|- ( y ( _V \ _E ) B <-> -. y e. B ) |
| 18 |
12 17
|
anbi12i |
|- ( ( y _E x /\ y ( _V \ _E ) B ) <-> ( y e. x /\ -. y e. B ) ) |
| 19 |
11 18
|
bitri |
|- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y e. x /\ -. y e. B ) ) |
| 20 |
19
|
exbii |
|- ( E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> E. y ( y e. x /\ -. y e. B ) ) |
| 21 |
|
exanali |
|- ( E. y ( y e. x /\ -. y e. B ) <-> -. A. y ( y e. x -> y e. B ) ) |
| 22 |
8 20 21
|
3bitrri |
|- ( -. A. y ( y e. x -> y e. B ) <-> <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 23 |
22
|
con1bii |
|- ( -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> A. y ( y e. x -> y e. B ) ) |
| 24 |
|
df-br |
|- ( x SSet B <-> <. x , B >. e. SSet ) |
| 25 |
|
df-sset |
|- SSet = ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) |
| 26 |
25
|
eleq2i |
|- ( <. x , B >. e. SSet <-> <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) ) |
| 27 |
10 1
|
opelvv |
|- <. x , B >. e. ( _V X. _V ) |
| 28 |
|
eldif |
|- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> ( <. x , B >. e. ( _V X. _V ) /\ -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) ) |
| 29 |
27 28
|
mpbiran |
|- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 30 |
26 29
|
bitri |
|- ( <. x , B >. e. SSet <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 31 |
24 30
|
bitri |
|- ( x SSet B <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 32 |
|
df-ss |
|- ( x C_ B <-> A. y ( y e. x -> y e. B ) ) |
| 33 |
23 31 32
|
3bitr4i |
|- ( x SSet B <-> x C_ B ) |
| 34 |
5 6 33
|
vtoclbg |
|- ( A e. _V -> ( A SSet B <-> A C_ B ) ) |
| 35 |
3 4 34
|
pm5.21nii |
|- ( A SSet B <-> A C_ B ) |