Step |
Hyp |
Ref |
Expression |
1 |
|
brsset.1 |
⊢ 𝐵 ∈ V |
2 |
|
relsset |
⊢ Rel SSet |
3 |
2
|
brrelex1i |
⊢ ( 𝐴 SSet 𝐵 → 𝐴 ∈ V ) |
4 |
1
|
ssex |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) |
5 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 SSet 𝐵 ↔ 𝐴 SSet 𝐵 ) ) |
6 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
7 |
|
opex |
⊢ 〈 𝑥 , 𝐵 〉 ∈ V |
8 |
7
|
elrn |
⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ) |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
9 10 1
|
brtxp |
⊢ ( 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ( 𝑦 E 𝑥 ∧ 𝑦 ( V ∖ E ) 𝐵 ) ) |
12 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
13 |
|
brv |
⊢ 𝑦 V 𝐵 |
14 |
|
brdif |
⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ( 𝑦 V 𝐵 ∧ ¬ 𝑦 E 𝐵 ) ) |
15 |
13 14
|
mpbiran |
⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦 E 𝐵 ) |
16 |
1
|
epeli |
⊢ ( 𝑦 E 𝐵 ↔ 𝑦 ∈ 𝐵 ) |
17 |
15 16
|
xchbinx |
⊢ ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) |
18 |
12 17
|
anbi12i |
⊢ ( ( 𝑦 E 𝑥 ∧ 𝑦 ( V ∖ E ) 𝐵 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
19 |
11 18
|
bitri |
⊢ ( 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
20 |
19
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) 〈 𝑥 , 𝐵 〉 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
21 |
|
exanali |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
22 |
8 20 21
|
3bitrri |
⊢ ( ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ↔ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
23 |
22
|
con1bii |
⊢ ( ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
24 |
|
df-br |
⊢ ( 𝑥 SSet 𝐵 ↔ 〈 𝑥 , 𝐵 〉 ∈ SSet ) |
25 |
|
df-sset |
⊢ SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) |
26 |
25
|
eleq2i |
⊢ ( 〈 𝑥 , 𝐵 〉 ∈ SSet ↔ 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ) |
27 |
10 1
|
opelvv |
⊢ 〈 𝑥 , 𝐵 〉 ∈ ( V × V ) |
28 |
|
eldif |
⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ( 〈 𝑥 , 𝐵 〉 ∈ ( V × V ) ∧ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) ) |
29 |
27 28
|
mpbiran |
⊢ ( 〈 𝑥 , 𝐵 〉 ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
30 |
26 29
|
bitri |
⊢ ( 〈 𝑥 , 𝐵 〉 ∈ SSet ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
31 |
24 30
|
bitri |
⊢ ( 𝑥 SSet 𝐵 ↔ ¬ 〈 𝑥 , 𝐵 〉 ∈ ran ( E ⊗ ( V ∖ E ) ) ) |
32 |
|
dfss2 |
⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
33 |
23 31 32
|
3bitr4i |
⊢ ( 𝑥 SSet 𝐵 ↔ 𝑥 ⊆ 𝐵 ) |
34 |
5 6 33
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( 𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
35 |
3 4 34
|
pm5.21nii |
⊢ ( 𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵 ) |