Metamath Proof Explorer


Theorem brsset

Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Hypothesis brsset.1 𝐵 ∈ V
Assertion brsset ( 𝐴 SSet 𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 brsset.1 𝐵 ∈ V
2 relsset Rel SSet
3 2 brrelex1i ( 𝐴 SSet 𝐵𝐴 ∈ V )
4 1 ssex ( 𝐴𝐵𝐴 ∈ V )
5 breq1 ( 𝑥 = 𝐴 → ( 𝑥 SSet 𝐵𝐴 SSet 𝐵 ) )
6 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
7 opex 𝑥 , 𝐵 ⟩ ∈ V
8 7 elrn ( ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) ⟨ 𝑥 , 𝐵 ⟩ )
9 vex 𝑦 ∈ V
10 vex 𝑥 ∈ V
11 9 10 1 brtxp ( 𝑦 ( E ⊗ ( V ∖ E ) ) ⟨ 𝑥 , 𝐵 ⟩ ↔ ( 𝑦 E 𝑥𝑦 ( V ∖ E ) 𝐵 ) )
12 epel ( 𝑦 E 𝑥𝑦𝑥 )
13 brv 𝑦 V 𝐵
14 brdif ( 𝑦 ( V ∖ E ) 𝐵 ↔ ( 𝑦 V 𝐵 ∧ ¬ 𝑦 E 𝐵 ) )
15 13 14 mpbiran ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦 E 𝐵 )
16 1 epeli ( 𝑦 E 𝐵𝑦𝐵 )
17 15 16 xchbinx ( 𝑦 ( V ∖ E ) 𝐵 ↔ ¬ 𝑦𝐵 )
18 12 17 anbi12i ( ( 𝑦 E 𝑥𝑦 ( V ∖ E ) 𝐵 ) ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝐵 ) )
19 11 18 bitri ( 𝑦 ( E ⊗ ( V ∖ E ) ) ⟨ 𝑥 , 𝐵 ⟩ ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝐵 ) )
20 19 exbii ( ∃ 𝑦 𝑦 ( E ⊗ ( V ∖ E ) ) ⟨ 𝑥 , 𝐵 ⟩ ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ¬ 𝑦𝐵 ) )
21 exanali ( ∃ 𝑦 ( 𝑦𝑥 ∧ ¬ 𝑦𝐵 ) ↔ ¬ ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) )
22 8 20 21 3bitrri ( ¬ ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) ↔ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) )
23 22 con1bii ( ¬ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) ↔ ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) )
24 df-br ( 𝑥 SSet 𝐵 ↔ ⟨ 𝑥 , 𝐵 ⟩ ∈ SSet )
25 df-sset SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) )
26 25 eleq2i ( ⟨ 𝑥 , 𝐵 ⟩ ∈ SSet ↔ ⟨ 𝑥 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) )
27 10 1 opelvv 𝑥 , 𝐵 ⟩ ∈ ( V × V )
28 eldif ( ⟨ 𝑥 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ( ⟨ 𝑥 , 𝐵 ⟩ ∈ ( V × V ) ∧ ¬ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) ) )
29 27 28 mpbiran ( ⟨ 𝑥 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ↔ ¬ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) )
30 26 29 bitri ( ⟨ 𝑥 , 𝐵 ⟩ ∈ SSet ↔ ¬ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) )
31 24 30 bitri ( 𝑥 SSet 𝐵 ↔ ¬ ⟨ 𝑥 , 𝐵 ⟩ ∈ ran ( E ⊗ ( V ∖ E ) ) )
32 dfss2 ( 𝑥𝐵 ↔ ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) )
33 23 31 32 3bitr4i ( 𝑥 SSet 𝐵𝑥𝐵 )
34 5 6 33 vtoclbg ( 𝐴 ∈ V → ( 𝐴 SSet 𝐵𝐴𝐵 ) )
35 3 4 34 pm5.21nii ( 𝐴 SSet 𝐵𝐴𝐵 )